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| Donations & Academia smal

donor

University endowment rankings (2019)

« Harvard: $41 Billion nidsize
« annual increase: 1.5 Billion (3%) donor
« compare with annual budget: 4.5 Billion (10%)

* Yale: $30 Billion

 Stanford $28 Billion

* Princeton $26 Billion

« Stony Brook: 380 Million
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| ldentifying the Donors

These days a wealth of personal data is collected by universities
« demographics
 family and friends

Use these data

* geo locations to shape specific

« academics fund raising

 club memberships efforts .. and evaluate
« prior donation activities their expected

profitability

« we will call these properties “features”



Looking Under the Hood

Our software has two main components
« Pattern Miner: searches for groups of donors with similar features and
similar donation behavior
« Pattern Browser: allows analysts to explore these patterns and extract
actionable insights
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Patterns Must Also Be

What makes a group of donors interesting?
* right -- when they have a high probability of

An interesting pattern is thus a group of similar people where
* their probabillity of a specific type of donation is

« our Pattern Miner extracts these interesting patterns automatically via
statistical hypothesis testing (Mann-Whitney, X2 test for independence)



| Let's See an Example (a 2D Pattern)

Total of amount of gifts Description (High NUM_GIFTS_4YRS + High AGE)

in FY 2015-2018
The probability that a randomly selected point within this group has a higher

LOG TOT AMT 4YRS than any point outside this group is 0.88. This finding is

P

B 1.1

3.00 <= NUM_GIFTS_

B 0.3

L_41'uu <= AGE
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Example Continued....
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Next: A Tour of the Visual Pattern Browser

Example:

« what kind of donor is likely to make a Lifetime Endowment and how much
* history is captured by the indicator LIFETIME_ ENDOWMENT _IND (0/1)
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Group Bubble Chart
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Group Bubble Chart
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Group Bubble Chart Baloke m Gesiiie Group Summary Group Detail
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Takeaways From This First Study

Emailing gives little hope for lifetime endowments
« not much more than not doing anything (40%)

Scheduled visits are much better
* managing donors is the way to go (70%)

- Frequent contact pays off for managed donors
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Next: Who WIll Make a Planned Gift

Planned gifts are typically difficult to predict
* they often occur in a will, after the donor has passed
* there is rarely a prior announcement
 they are usually considerable sums of money

Predictive analysis based on historical data can give the insight

« find the type of secret donor who will end up making a
 captured by the indicator LIFETIME_HH_ PG_IND (0/1)



Group Bubble Chart Points -:I Groups Group Summary Group Detail
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ldentify the Most Charitable Donors

This has been a so-far neglected group
 are there any donors who might be forgotten?
« what kinds of people are they?
 can they be converted to managed donors?

* let’s have a look at
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| Takeaways From This Study

Business school grads are the most valuable prospects for
lifetime endowments

« any other grads (College of Fine Arts, School of Engineering, School of
Social Work, etc. ) not so much

* the probability is not overly high for most (29%)

* but still much higher than for the overall unmanaged population (8.6%)
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Finally: How About the Radio Station

The campus radio station is the pride of many universities
 they depend on donations big time
« where do these funds they come from?
* how to solicit? who?
« knowing it may even help inform (some of the) programming

 captured by the , setto 1 if a person has
donated to it within the past 4 years
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Exposed a good strategy on how to use our system

 derive nuanced multi-level fundraising strategies by refining
the characteristics of a certain family of groups

« first launch a more general campaign for a broader group

 then address smaller but more specific groups with more
targeted campaigns with higher probabilities of success

|




| Now to a Live Demo




Pattern Browser 4 XAl

Pattern Browser allows analysts to
« explore a dataset from multiple perspectives
« quickly follow their instincts via simple mouse-click interactions
 within a single session from one dashboard

Fully embraces the paradigm of explainable machine learning / Al

« shows the results not just as a single number but with
on the number was derived and It relates to the overall data

« explanations are and focus on the important features only



O
Contrast: Subgroup Analysis

Decomposing large populations into sets of homogenous subgroups is
well known in fields like medicine

» seeks to identify a specific patient characteristics that benefit a desired outcome
typically done using prior knowledge, pre-specification, or stepwise procedures
not scalable in the number of features

we learn these subgroups by automated discovery
robustly via statistical pattern mining
this can scale to 1,000s and more features/variables



Contrast: Regression Models

Regression models are a standard approach in data analysis
* intractable to explicitly model all possible interactions between variables

« even with pairwise interactions we would have over 10,000 possible
Interactions in the study we presented here

« also are restricted to modeling linear relationships -- nonlinear relationships
would require additional transformations

our system can identify interactions and capture nonlinear
relationships automatically



BLACK

Contrast: Black Box Models o 1T

Random forests, neural networks, etc. have become ubiquitous
* lots of libraries are available

« explainable Al tools, such as SHAP, LIME, can help explain a black box
model's decision

* no guarantees if the decision is based on a true cause-effect relationship
Or a spurious correlation

our system puts the human in the sense-making loop
 analyst can identify the most likely explanation and choose an action
e.g. select the most likely explanation why a group is more likely to donate
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The system used for this analysis
 available as a software package called Pattern Browser
« developed by Akal Kaeru LLC http://akaikaeru.com
« development was funded by NSF SBIR grant 192694 (Phase | and II)

Thanks also to
« John Gough from U Texas, Austin for providing the data and his insight interpreting them


http://akaikaeru.com/

