Using Demographic Pattern Analysis to Predict COVID-19 Fatalities on the US County Level

Explainable AI by

Akai Kaeru

http://akaikaeru.com info@akaikaeru.com

Method

COVID-19 Risk Analysis Goals

Understand: what factors expose a community to COVID-19 risk
 Inform: health policy on important concurrent risks and correlations
 Predict: local COVID-19 mortality, medical resource needs, success of mitigations

Computational Tools

Methods commonly in use

Simulation (Susceptible - Exposed - Infectious – Recovered (SEIR) model)

needs almost no data and can look far ahead, but has many unknown parameters
 → observe and keep tuning

Curve fitting (e.g., IHME)

can learn from other data, but data might not fit perfectly
 → collect data and keep fitting

Machine learning and AI (neural nets, random forests, decision trees)

can provide predictions, but require lots of data, are black boxes, lack explanations
 → this will happen -- but why?

Our new approach, expanding AI to Explainable AI

Pattern mining

learns from associations in the data, learns them explicitly and makes them explainable
 → this will happen – and this is why!

Some of our Many Findings

- at risk: sparsely populated counties with poor and aging populations
- at risk: counties with sleep-deprived, low-educated, uninsured residents
- at risk: wealthy counties with high home ownership and housing debt counties with more residents in debt have a higher risk of COVID-19 fatalities

https://akaikaeru.com/covid-19-1

Our Data

500 variables for 3,008 US counties

- demographics
- socioeconomic vulnerabilities
- housing composition vulnerabilities
- minority status and language
- housing, transportation, nutrition
- many of these from the CDC
- COVID-19 death rates (evolving)

Our Approach

Objectives

Find patterns (subpopulations) in the high-dimensional feature space where:

- the data items are similar in a set of relevant features (variables)
- the data items have, on average, unusually high (or low) values in some chosen target variable (in our case, COVID-19 death rate)

Benefit: dimension reduction

- typically each patters can be described by just a few features
- it forms a **brief narrative** of the process that caused the target

Case Studies

Risk Pattern

This sequence shows how our algorithm automatically identified a subpopulation of counties in the 500-D socio-economic feature space that fits the two search criteria:

- similar in this set's identified three features
- on average a higher than US-average COVID-19 death rate

† y-axis: May COVID-19 death rate on log scale 🔹 a county 😑 a county in the pattern's subpopulation

1st feature: % insufficient sleep \longrightarrow 2nd feature: % uninsured \longrightarrow 3rd feature: % w/o high school diploma

Generated explanation:

Counties where a large proportion of residents get insufficient sleep, are uninsured, and did not finish high school are more at risk for these residents to die from COVID-19 when contracting the virus

Deeper takeaways:

All of these factors point to a weakened immune system which elevates COVID-19 vulnerability risk

- lack of sleep: this weakens the immune system → direct risk
- low education: (1) residents may work two or more jobs leading to lack of sleep → indirect risk
 (2) they may work outside of the home which leads to social contacts → direct risk
- uninsured: residents take less care of their health and are likely physically weak \rightarrow direct risk

June

10

Mostly located in the South

Predicted counties show up

Predicted counties shoot up

Correlation Pattern

Correlations:

- important correlations are often hidden with conventional correlation analysis that uses all data points indiscriminately
- is there a correlation between housing debt and COVID-19 death rate? No.

But we found a correlation for counties in a pattern where

- home ownership is high
- poverty is low

More debt \rightarrow more deaths

The affected counties are in the North East and at the big lakes.

Weakened immune response

- stress & worries about debt
- low money \rightarrow poor nutrition

Interactive Web Browser-Based Dashboard

COVID19 RISK DASHBOARD

The dashboard supports the following assessments

- Evaluate: click on a county and see its risk profiles
- Compare : see what other counties have these risk profiles
- Predict:
 - t: project what death rate might be on the horizon
- Review: see the risk profiles in context of the overall US

Virus Mitigation Recommendations

Learn from other counties what to do next

- complete lockdown or just close bars, restaurants?
- how much routine cleaning and disinfection?
- how much protective gear and what?
- how strongly to enforce social distancing?

Again, we can learn from data

- find patterns of counties where a certain strategy worked (or not)
- look which of these patterns your county fits to

Akai Kaeru

• predict what will work and what will not